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The Becker-Coppens treatment of extinction is applied to the polarized neutron technique. Ana- 
lytical expressions for the extinction correction are derived for plate-like crystals. The formalism is 
applied to data collected on yttrium iron garnet. Measurements were performed on crystals of various 
thicknesses using wavelengths in the range 0.5-1.1 /~. The correction is shown to be quite adequate 
even for severe extinction, with a preference for Lorentzian shape of 6, the mean diffracting power, 
though some systematic deviations are present. The method is shown to be very sensitive to a given 
model for extinction, mainly because of the independence from any scale factor. It is demonstrated 
that the flipping ratio R can be out of the range [Rkl . . . .  t i e ,  R d y n a m i c ]  and that such a situation implies 
the simultaneous presence of primary and secondary extinction and one can have R=Ray . . . .  ic  for a 
crystal far from dynamical behaviour. Application of a recent dynamical test proposed by Kato [Acta 
Cryst. (1976), A32, 453--466] concerning the validity of the physical assumption of the model shows that 
in neutron refinement for most reflexions the situation is encouraging. Estimation of mosaic spread 
by y-ray diffraction leads to a fair agreement with the refined values. 

Introduction 

There are two approaches to the theory of diffraction 
in crystals. The dynamical theory is the more general 
one but can only be applied to crystals that are perfect 
or show only small distortions. The kinematical theory 
is the limit of the preceding one in the case of small 
coherent domains or short wavelengths: it is widely 
used in structural crystallography. 

For most crystals the situation is intermediate be- 
tween these two extreme cases and extinction model~ 
are necessary to obtain the Fourier components of the 
electronic density. Until now, extinction models have 
been described starting from the kinematical theory 
and using the energy transfer equations of Darwin 
(1922): this 'mosaic model' has been further developed 
by Hamilton (1957), Zachariasen (1945, 1967), and by 
Becker & Coppens (1974 - hereafter referred as to BC). 
Recently Kato (1976) has proposed a first approach 
to the problem, starting from the Takagi-Taupin equa- 
tions of dynamical theory, and describing the distor- 
tion in terms of an ensemble average. This treatment 
justifies the use of energy transfer equations under 
specific conditions. 

The purpose of this paper is to show that polarized 
neutron experiments, which do not depend on any 
scale factor, are very dependent on extinction and 
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provide original tests for extinction models. Moon, 
Koehler, Cable & Child (1972 - hereafter referred as 
to MKCC) have formulated the problem and pro- 
posed a first-order solution applicable only when the 
extinction is small. In the first part, some analytical 
derivations of secondary extinction corrections are dis- 
cussed, using BC formalism (the same notation will 
be used). In the second part, the main principles gov- 
erning polarized neutron diffraction are briefly re- 
viewed, with a special discussion of extinction prob- 
lems. The method is then applied to the case of yt- 
trium iron garnet (YIG). This experiment shows the 
technique of polarized neutrons to be very powerful 
for testing extinction models and for deciding whether 
the crystal behaves dynamically or kinematically (fol- 
lowing Kato's criterion). 

I. Analytical expressions for secondary extinction 

The extinction correction y is defined as the reduction 
of the integrated intensity P from the kinematical 
value Pk: 

P=PkY . (1) 

This coefficient consists of a factor yp(xp) for primary 
extinction in the coherent domains and a factor 
ys(ypxs) for secondary extinction between these do- 
mains. The expression used for y is 

y =  yp(xp)ys(yt, xs) . (2) 

BC gave an approximation to the expression for y~ 
when absorption is negligible, 
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with 

ys= ~ ___(-1)" T(---SQ_ 1 6,+l(et)de 1 (3a) 
n = 0  n [  

z(n)=v -1 ~ I rlr;"-Jd . (3b) 
d = 0  v 

6(et) stands for the mean diffracting power for a given 
divergence et of the incident beam from the Bragg 
condition 

~ = a  * W, (4) 

where a(ex) is the diffracting power of an average co- 
herent domain and W(el) the angular distribution of 
those domains. 

Zachariasen (1967) has pointed out that if the widths 
of O'(el) and W(eO are of the same order of magnitude, 
secondary extinction depends on two parameters, the 
mean angular misorientation (g) and the size of the 
mean coherent domain (t). In equations (3), /'1 and 
T~ are the respective path lengths along the incident 
and diffracted directions and the integral in (3b) is 
taken over the crystal volume v. 

It can be shown (Appendix A) that (3) represents 
the exact solution of the energy transfer equations [BC 
equation (10)] when the crystal is in a pure Laue case. 

The order of magnitude of primary extinction is de- 
scribed by BC with an expression similar to (3). 

Equations (3) have been numerically solved by BC 
for the case of spherical and ellipsoidal crystals, for 
various shapes of W(eO. In neutron diffraction, the 
choice of a plate-like crystal is often preferable to get 
enough diffracted intensity and reasonable extinction. 
We shall concentrate here on such cases. 

In Appendix B, a method of calculation of the quan- 
tity T (") is described for geometries varying between 
pure Laue and pure Bragg. In the Laue case it is shown 
that 

1 ] n n a  n + i 
T(,) = a" 1 + 

n + l  c---os ~----~- (cos ~z2)C b(n+ l) (n + 2) 

1 n--1 

(tan el tan ~2 ] ] 
x _ + . ( 5 )  

\ cos ~x (cos ~2)C/ 

In this expression, a is the thickness of the plate, b 
the width of the entrance face, ~ and ~2 the angles be- 
tween the normal to the plate and the incident and dif- 
fracted beams. C =  1 in equatorial conditions and can 
be approximated to cos/z2 when the angle Pz between 
the diffracted beam and the equatorial plane is small. 

In other cases, the approximation is less simple and 
it is always possible to use the approximation of a 
large plate (b/a large) so that (5) reduces to 

T(,).,, 2" n+l-  [-2r(i)]" (6) 

where T (1), the actual value for a finite crystal, can be 
obtained exactly. 

Expressions for the extinction correction y are also 
derived in Appendix B for both a Lorentzian and a 
Gaussian distribution e(el) and it is shown that in 
some cases the series expansion reduces to a closed 
form. 

II. Extinction in polarized neutron diffraction 

Neutrons are two-spin-state particles and polarized 
neutron beams are composed of neutrons in only one 
spin state. Collecting the intensities P + and P -  for up 
and down spin states yields the 'flipping ratio', 

p+  
R =  p -_ ,  (7) 

which does not depend on any scale factor. The fol- 
lowing experimental conditions are assumed to be 
realized: (a) no half-wavelength contamination, (b) per- 
fectly polarized incident beam, (c) the magnetic mo- 
ments are all aligned with the neutron spins. We shall 
call 09 the angle between the direction of magnetiza- 
tion and the diffusion vector and define qZ=sin2 o9. 

II. 1. Kinematical case 
Using an ideally imperfect crystal (or a powder) and 

choosing (q2= 1), the value of the flipping ratio is 
given by 

FN+FM] z . (8) R=R = [ 
FN, the nuclear structure factor, is given by the well 
known formula 

FN = ~ bj exp (2niH.  ri) exp ( -  W0; 
J 

and FM, the magnetic structure factor, by 

e 2 
FM= -2~--fic z 7~ ~. p J j ( H )  exp (2niH.  rj) exp ( -  Wj), 

-7" 

where/ t j  is the algebraic value of the magnetic mo- 
ment, in Bohr magnetons, of the site j and fj(H) is 
the normalized magnetic form factor of this site, ~'N 
is the moment of a neutron in nuclear magnetons. 

II. 2. Dynamical case 
Under the same experimental conditions but using 

a perfect thick crystal 

= [ FN + FM ) = R~z. (9) 
R =  RD \ ff~u~ F M 

The dynamical flipping ratio Ro can be derived from 
the kinematical value, which can be determined ex- 
perimentally by applying the polarized neutron tech- 
nique to fine magnetically aligned powders. 
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II. 3. Pract ica l  case q f  a real crys tal  
MKCC give in their equation (A1) generalized en- 

ergy transfer equations for polarized neutron diffrac- 
tion, which can be written with BC notation 

81 + 
_ _ -  6 + 1 + + 6 + + 1 + + 6 - + 1  - 
cgxl 

81 + 
- -  6 + I +  + 6 + + I + + ~ - + I o  

c9x2 

c9Io 
- -  6 - i o + 6 - - i - + 6 + - i  + 

cgx~ 

8 1 -  
- o - l - + o - - I o + a + - I o  + . (10) 

c3x2 

Equations (10) do not take into account absorption 
and depolarization" these effects would, for example, 
add a term ( - l t e l o  + + I t e l o - / Z . I o  +) to the first equa- 
tion and so on for the others, if/Zd and/z, are respec- 
tively the coefficients of depolarization and absorp- 
tion. Io ~ and I + refer to incident and diffracted inten- 
sities, + and - to the spin state of the neutrons. 

ff~S(et) is the diffracting power for an incident neu- 
tron in spin state i diffracted in spin statej. 9+(e~) and 
~-(el) are defined as 

6+ =(~++ + 6 + -  

6-  = ~  + 6  -+ (11) 

and represent the total diffracting power for incident 
neutrons in a given spin state. The diffracting powers 
rr~S(e~), which are defined as in BC treatment, differ 
from one another by [F~JI2" 

~+ +(e0-Z(e0 IF + +lZ=z(e0 [FN +q'FM[ z 

(e~)=Z(e~) IF--12=z(e0  IFN--qZFMI z 

,~+ - ( e 0 =  o-  + ( e , ) = f ( e , ) g  + -2 =x(e~) [FMI2q2(1 _ q 2 ) .  
(12) 

Z(~) is a Lorentzian or Gaussian function of e~. 
The spin flip diffracting power a + -(el) is generally 

very small since levi is small and qZ is often equal to 1. 
With the assumption that ~ + - = 0 ,  the system (10) 
reduces to equations equivalent to the system BC equa- 
tion (10) for the appropriate polarization state and can 
be solved as discussed in § I. 

When necessary one may estimate the perturbing 
effect of ~+- by a first and second-order correction, 
as discussed by MKCC. If for a given reflexion, this 
correction is of significant value, one should be cau- 
tious in the interpretation of this reflexion, unless a 
better solution of the system (10) can be found. 

With these assumptions, the actual value of the 
flipping ratio can be written 

y+ 
R = R r  .... _ (13) 

Y 
where y~: obey equations (2) and refer to G ± (equation 
11). In the following we have omitted the +_ signs. 

The secondary extinction coefficient Ys (3) is given by 

Ys = ~,  Qczr.y~ (2.) (14) 
,=0 3 n! 

for a Lorentzian distribution, and by 

oo T(,) 
Ys= ,=0 ~ ( -Qocayv )"  n ! ] / (n+ 1) (15) 

for a Gaussian distribution, with 

:g)' eL = t--si--ff 2O- + (16) 

ocG = -t-s]n-~ + - 1/2 (17) 

The small coherent domains are assumed to be iso- 
tropically distributed and the primary extinction yv can 
be estimated [BC equation (37)] as 

[ A(O)x~ 1 - , / 2  
yv  = I + 2xo + 1 + B(O)xu (18) 

with 
sin 20 

x v = ~ Q  -~ t 2 . (19) 

The dynamical theory of diffraction may, in some 
simple cases, provide an answer to the problem of 
primary extinction. Unfortunately, the shape of the co- 
herent domains changes drastically within the crystal 
and a statistical expression for yv is completely un- 
known. Therefore, it is not obvious whether, provided 
yp is not too small (yv > 0.7), its description by a for- 
mula like (18) is unreasonable; and the present treat- 
ment of small primary extinction has the advantage of 
internal consistency. 

III. Study of extinction on yttrium iron garnet OrlG) 

The flipping ratio R has been measured for about 250 
reflexions of YIG (Bonnet, Delapalme, Tchdou & 
Fuess, 1974). The reflexions suffering highly from ex- 
tinction were measured on different plate-shaped crys- 
tals: YIG-1 (5×2-7×1 mm), YIG-2 (4×2.7×0.3  
mm), YIG-3 (4 × 1-7 × 0.8 ram), YIG-4 (4 × 2.7 x 1 
ram). The dimension~ are along the directions [111], 
[1]0], [112], respectively. All structural information has 
been discussed by Bonnet, Delapalme, Fuess & Thomas 
(1975). Measurements were performed with the goni- 
ometer DN2 at Melusine (CENG) and the D5 facility 
of the high flux reactor at ILL, both in Grenoble (this 
last instrument is installed at a hot source and allows 
measurements at wavelength down to 0-5 A). Several 
reflexions were observed on the different samples, at 
various wavelengths. YIG-4 was studied more exten- 
sively, then reduced in thickness to 0.3 mm and the 
measurements were repeated. Moreover, powder meas- 
urements were done with both polarized and unpo- 
larized neutrons on a sample in which the magnetic 



948 P O L A R I Z E D  N E U T R O N  D I F F R A C T I O N  FOR T E S T I N G  E X T I N C T I O N  M O D E L S  

moments were aligned with the magnetic field. For 
equatorial reflexions, these measurements yield the 
kinematical flipping ratio RK [equation (8)], from 
which the dynamical RD is derived. 

III. 1. Methods of refinement 
In a first refinement, we have minimized for each 

sample the quantity 

Y~- (20) 

with respect to t, g and Rr: from RK, since the crystal 
is centrosymmetric and Fu is known (Bonnet et al., 
1975) one can derive FM and therefore calculate y+ 
and y - .  In the summation (20), all the independent 
measurements relative to a given sample are included 
(e.g., in the case of YIG-4, 51 observations were used, 
corresponding to 12 reflexions), wi was chosen as 

1 
= aZ(Ri) = a2(Ri) + (k,~Rxel) z (21) 

Wi 

where e, is defined as 

e ,=  1-- Y+- (22) y~- 

In (21) a~ comes from counting statistics, and k~ is 
adjusted so that the standard deviation of the observa- 
tion of unit weight S is closest to 1. 

S - I ~  ( R y+] wl R , -  iK__- ] .  (23) 
no - -  no Y t 

no and no are respectively the number of observations 
and the number of adjusted parameters. The weighted 
agreement index is defined as 

( q9 ) ~/2 
R~(R) = -2- -w-TR { (24) 

i 

The refinements were done for Lorentzian and 
Gaussian distributions and the results for YIG-4 are 
shown on Table 1. For the same sample q9 was cal- 
culated as a function of t and r/ and was plotted in 
Fig. 1. It is clear that the refinement converges towards 
a unique minimum and in a region far away from the 
one where primary extinction is predominant. 

In a second procedure the refinements were carried 
out on the magnetic structure factor, like in a conven- 
tional X-ray refinement. The advantage of this proce- 

dure is the possibility of refining directly on the mag- 
netic form factor. In the same refinement, we have 
simultaneously introduced all the Robs corresponding 
to YIG-1 and YIG-4 (before and after reduction of 
the thickness) for the various wavelengths (in the range 
0.5-1.1 /k). The nuclear positions and Debye-Waller 
factors were kept constant and different adjustable ex- 
tinction parameters t and g were introduced for YIG-1 
and YIG-4. Since the extinction factor y+/y- differs 
from 1 by a term proportional to (FNFM) to a first 
approximation, the variance ~r 2 for each observation 
was taken as 

crZ(FM)=Cr2c(FM)+k'w F-MFN'~3 Z (1) (25) 
sin 20 

The results are shown in Table 2 and, compared with 
those of Table 1, show a close agreement for t and g 
within their standard deviation. 

It may be pointed out that an X-ray refinement from 
a sphere of YIG (Bonnet et al., 1975) yielded extinc- 
tion parameters t=7/ tm,  g = 5  x 104, which are of the 
same order of magnitude as those of Table 1. 

III. 2. Discussion of the results 
The best fit is obtained for the hypothesis of a 

Lorentzian diffracting power a(el). 

t[ 
4o 20 ( :D( t ,h  

) 

3 0  

2 0  

( s e c .  o f  a r c  ) 

Fig. 1. Map of the function ~0 minimized by least squares as a 
function of the extinction parameters t and tl for a Lorentzian 
distribution. 

Table 1. Refined extinctions parameters t, g and agreement factors on flipping ratio R for YIG-4 

Distribution of coherent 
domains 

• . 5, . S i z e  DlSOrlentahon Agreement factors 
t (/tin) g × 10 -4 ~/(s of arc) R (R) Rw (R) S 

Gaussian 9-62 2.36 2.46 0.0152 0.0161 2.08 
(2"0) (0"4) 

Lorentzian 16.98 4.24 1.37 0.0118 0.0118 1.11 
(3.0) (0.8) 
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m 

(a) Let us consider the reflexion 642. In Fig. 2(a), 
the flipping ratio Robs is plotted versus the quantity 
[~=23TC~)/sin 20]. The experimental points are dis- 
played mostly between Rr and Ro (Rr is obtained from 
the powder experiment). Fig. 2(b) shows the magnitude 
of FM as a function of the same parameter (~). The 
upper (open stars) and lower (shaded stars) results 
represent values of FM calculated from Ro and RK re- 
spectively. The actual values (shaded squares) are ob- 
tained by applying the extinction correction discussed 
in § II. It can be concluded that even the most severely 
extinction-affected points lie within one standard de- 
viation of the horizontal line obtained from the powder 
measurement. It seems that the crystal tends towards 
dynamical behaviour for the highest values of ~. Let 
us investigate this point further, using the measure- 
ment on a very thick crystal ( ~  12 mm). 

With this crystal, R values have been observed that 
are significantly out of the range (RK, Ro) (Table 3)" 
R > Ro if Rr < 1, R < Ro if Rr > 1. The question is there- 
fore the following: does the fact that R is equal to or 
beyond Ro imply that we are in a dynamical situation 
(only primary extinction). For  severe extinction BC 
have shown that ys(x) behaves like x2 a/z. Therefore 
from equation (2) 

so that 

x l/y,, 
yocy, IFI1/Y, F 

P oc F]/ yp . (26) 

It is well known that in the upper limit of primary 
extinction yp varies as 1/F. Therefore P will vary as 
F" ,  m being in the range [½, 2] and for polarized neu- 
trons, R ( ~  R~) will be in the range [R~,RgZ]. In con- 
clusion, if the crystal behaves dynamically R =Ro but 
the converse may not be true. The values of m for the 
three reflexions of Table 3 agree with this discussion, 
and it should be noticed that these reflexions are listed 
in terms of decreasing extinction. This discussion 
should without doubt give confidence in the behaviour 
of y proposed by BC [equation (2)]. 

Table 3. Observed compared with the kinematical and 
dynamical flipping ratios for a thick crystal (~  12 ram) 

hkl Robs Ro R~ m 
220 0.787 (3) 0"636 0.405 0"529 
6T'2 0.850 (3) 0"778 0"608 0.647 
4~0 4"17 (2) 4.49 20.2 0.95 

T able 2. Refined extinction parameters t, g and agreement factors on magnetic structure factor 
FM for YIG-1 and YIG-4 

YIG-1 YIG-4 All reflexions 0.83 >y+/y- > 1.20 
t (pm) gx 10 -4 t (pm) gx 10 -4 R (F) Rw (F) S R (F) Rw (F) S 

Lorentzian 19-8 2-1 14.9 4-0 0.0365 0.0388 1.20 0.0283 0.0325 1.49 
(4"2) (0"4) (3-0) (1 "0) 

Gaussian 9.9 1.1 15.2 1.6 0.0493 0.0433 1.47 0-0424 0.0449 3-28 
(5.2) (0.1) (3.6) (0.2) 

701 

.65 

Cp~) 

Dynamical R • . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

Kinematical R (a) 

.................................... - .............. ~ ........ . .................................... • ...... i ............... _ ..... : 

• • • • .j~ ~ powder value 
= . ~. 

"k 
-k-k 

(b) 

Fig. 2. (a) Flipping ratio of the 62~ reflexion as a function of ~ (wavelength and thickness). (b) Magnetic structure factor FM as 
a function of ~. Extinction corrected III, kinematical -k and dynamical ~ values. 
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(b) With the definition of e (22) one can write 

R=R~(1 - e ) .  (27) 

If RK is known from a powder measurement, it is pos- 
sible to draw the straight line (27) as a function of [el 
(e>0  ify+/y-<l, e < 0  ify+/y->l). This was done 
in Fig. 3(a) and (b) for the two reflexions 220 and 6~-'2: 
in this figure, the measured values of R, for the four 
samples, different wavelengths and thickness have been 
plotted as a function of lel calculated from the refined 
values of t and g and assuming a Lorentzian distribu- 
tion (t and g depend on the sample to which is referred). 
The qualit), of the model used for extinction can be 
appreciated by the departure of the points from the 
'theoretical' line (27). In this practical case, the fact 
that the points corresponding to different samples and 
different wavelengths are homogeneously aligned show 
the type of correction to be quite general. 

(c) In Fig. 4, the values of R as function of lel are 
plotted for the reflexion 220 (crystal YIG-4) assuming 
either a Lorentzian or a Gaussian distribution. It ap- 
pears that for large values of lel, the Lorentzian cor- 
rection slightly undercorrects, while the Gaussian cor- 
rection strongly overcorrects for extinction. The same 
effect was observed for many reflexions. The method 
of polarized neutrons seems therefore to be sensitive 
to the type of statistical distribution used to describe 
the defects of the sample. 

(d) The same conclusion can be drawn from Table 4 
in which the magnetic structure factors of the 64-2 re- 
flexion, corrected for extinction, are reported. The ex- 
tinction factors are given in order to show the relative 
influence of primary and secondary extinction. 

(e) In order to check for the significance of the re- 
fined parameter g, the mosaic spread r/ (r/= 1/21/ng ) 
has been estimated by the gamma-ray diffraction tech- 
nique (Schneider, 1974) on the crystal YIG-1. We have 
chosen the reflexion 64-2 for which mosaic spread is 
the dominant factor governing its extinction. The 
width of the measured rocking curve is about 17" but 

the resolution of the apparatus is 10", Therefore it is 
necessary to deconvolute from the instrumental width 
and, depending on the assumed shape of the rocking 
curve, one obtains 

r/ob~ ~ [3", 6"] .  

The calculated value of r/ (from Table 2) is found to 
be 6" for a Gaussian o and 3" for a Lorentzian o. 

R 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . .  _%~.. _~_~_,2_ _ R _ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  - - - J  

.6 • • 

.5 

Kinematical R 
.4 

R 

.R 

i i l i I 

.1 2 3 4 5 

(a) 

. . . . . . . . . . . . . . .  ~y,_a_m_ Lc_~ ] _ _R . . . . . . . . . . . .  .__~_~,/__ ___ 

I .... I I I . 

.I .2 .3 .4 
(b) ~, l 

F ig .  3. M e a s u r e d  f l ipp ing  r a t i o  R as f u n c t i o n  o f  [e[ w i th  a 
L o r e n t z i a n  e x t i n c t i o n  c o r r e c t i o n  f o r  Y I G - 1  e ,  Y I G - 2  •, 
Y I G - 3  • a n d  Y I G - 4  R .  C o m p a r i s o n  w i th  the  s t r a igh t  l ine  (27) 
f o r  (a)  2~0 a n d  (b) 54~ ref lex ions .  

R 

. . . . . . . . . . . . . . . . . . . . . . . .  D2 _'_m_L:_,L. ~ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

. 6  

i D 

• r-t 

D i  

5 

K i n e m a t i c a l  R . . . . . . . . . . . . .  
4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

| I I I I I I 

.1 2 3 4 5 6 .7 I • I 

Fig. 4. Measured flipping ratio R as function of lel for gorentzian • and Gaussian [] extinction correction. Comparison with 
the straight line (27) (YIG-4 2~20). 



M. B O N N E T ,  A. D E L A P A L M E ,  P. B E C K E R  AND H. FUESS 951 

Repeated measurements changing the setting angles 
and for a few other reflexions lead to the same values 
and do not reveal any significant anisotropy of the 
mosaic distribution. Therefore the refined value of g 
is of some physical significance. 

( f )  Finally we want to test the validity of the model 
of energy transfer equations in terms of the condition 
introduced by Kato (1976). He introduces a correla- 
tion length re which can be shown to vary between a 
coherence length (which can be compared to t) and 
a misorientation length (to be compared to g2/sin 20). 
The condition can be expressed as: 

V 
r2,~ A ,-, -221-F,j]-. (28) 

V is the unit-cell volume and the smallest value of A 
in this case is ~ 25/t. For YIG-4 the refined extinction 
parameters are t ~ 15/t, t* =g2/sin 20~ 5/sin 20. 

For the smallest Bragg angle t*~22/ t .  In such a 
situation the condition (28) is not exactly fulfilled. The 
situation improves when sin 20 increases since, at the 
same time, the influence of 'particle size effect' de- 
creases. Therefore, though for some small-angle re- 
flexions the basic assumptions of the 'incoherent' de- 
scription of extinction are not well satisfied, the model 
seems to give satisfactory correction and its domain 
of validity (as shown also by most of the cases dis- 
cussed in the literature) may be less strict than (28). 
It should be noticed that in most of the neutron dif- 
fraction experiments, the situation should be less dra- 
matic. 

The authors are indebted to Dr J. Schneider for 
helping in the y-ray measurements. They also 
thank Professor N. Kato for his interest in the experi- 

mental tests for extinction and for helpful discussion, 
and the other members of the polarized neutron group, 
Drs J. Schweizer, F. Tasset and J. X. Boucherle, for 
stimulating and valuable discussions. We are grateful 
to Professor E. F. Bertaut for encouraging this work. 

APPENDIX A 
On the accuracy of the solution (3) of Becket & 

Coppens (1974) 

The section of a general, convex-shaped crystal in a 
plane parallel to the incident direction (unit vector u0 °) 
and the diffracted direction (unit vector u °) is repre- 
sented on Fig. 5. The entrance surface is A1BaA2 and 
the exit surface is BaA2B2. There is an overlap region 
BIA2. Becker & Coppens (1974) (BC) have shown that 
the extinction correction can be formally calculated by 
an iterative procedure. Each step of the calculation in- 
volves integration of a volume associated with each 
current point M, and is shown in Fig. 6: the two pos- 
sible situations as shown in Fig. 6(a) and (b) depend 
on the position of M with respect to B~. T~(M) is the 

depth along the incident direction" TI(M)=M°M. The 
integrand involves the quantity rain [TI(M),T~(M0]. 
The assumption made by BC is to replace this quan- 
tity by Tx(MO and it leads to the solution (3) without 
any further approximation. 

(a) If M ° is between AI and Bx (Laue case) 
min [Tt(M), T~(M~)] = T~(Mx). 

(b) If M ° is between B~ and A2 (Bragg case), the 
situation is more complex; 

If M1 ~ IQ, MI:  min [TI(M), TI (M0]= T~(M), 

If M~ e IM °, QI" min [T~(M), TI(M0] = T~(MO. 

Table 4. Results for YIG-4 6-~ reflexion; flipping ratio, corrected magnetic structure factor, primary 
and secondary extinction factor for each spin state, as functions of thickness and wavelength 

Quantities in parentheses are standard deviations. 
t (mm) F~t FM 
2 (/~) R Gauss Lorentz y+ y; y+ y~ y + [y- 
1"00 0"784 18"24 16"13 0"96 0-94 0"45 0"36 1"27 
1.10 (0.004) (0.8) (0.8) 

1-00 0"762 17"54 16"57 0"97 0"96 0"53 0"43 1"25 
0.92 (0.003) (0.7) (0.7) 

1.00 0.759 16.51 16.25 0.98 0-97 0.58 0.48 1.23 
0.812 (0.003) (0.6) (0-6) 

0"3 0"711 16"62 17.27 0"96 0"94 0"71 0"61 1" 19 
1.10 (0.004) (0.5) (0.5) 

0"3 0"671 16.43 17.30 0-98 0"97 0.82 0"73 1"13 
0"812 (0"003) (0"4) (0"4) 

0"3 0-669 16.07 16-91 0"98 0"97 0"84 0-77 1" 11 
0"74 (0"003) (0.4) (0.4) 

0"3 0"637 16"32 16"84 0"99 0"99 0-92 0"88 1"06 
0"5 (0"003) (0"3) (0"3) 

powder 0.608 16.65 16.65 1 1 1 1 1 
1"104 (0"005) (0"4) (0"4) 
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BC have shown that (3) is exact if 0 = 0, and that the 
solution is valid to the third order in x for 20=  n. 

This discussion shows that the approximation comes 
from the mixture of Laue and Bragg geometry. Many 
crystals, particularly in neutron diffraction, have simple 
shapes, e.g. parallelepipeds and plates. Such a situa- 
tion is represented in Fig. 7, for a parallelepiped. There 
are two situations for which no overlap occurs be- 
tween the entrance and exit surface; the incident and 
diffracted directions must lie in opposite quadrants. 

Many reflexions satisfy the condition of a pure Laue 
case, for which the solution (3) is exact. When the 
number of limiting planes of the crystal increases, the 
probability of having a pure Laue case decreases and 
the limit is a continuous surface, as shown in Fig. 5. 
The problem of Laue-Bragg cases will be further dis- 
cussed (Becket, 1976). 

APPENDIX B 
Analytical expressions for y in Laue geometry 

We shall restrict ourselves to the case of plate-like crys- 
tals in Laue geometries. The more general case will be 
discussed later (Becker, 1976). 

(1) Let us start with an infinite plate (Fig. 8) and an 
equatorial reflexion. Let ~,~ = cos 0q, ~12-~-cos (~2. For the 
two situations shown in Fig. 8(a) and (b), the values 
of T (") and of the extinction correction will be the 
same. (a) cq-0q = 20, (b) 0q + a2 = 20. 

Let x be the coordinate perpendicular to the crystal, 
x ~ [0,a], Tl=x /71 ,  T ~ = ( a - x ) / 7 2 .  From (3) 

since 

T(. )  = a - 1  ~ (~)z 1 .... 1 " x . _ 1 ( a _ x ) J d x  ' 
j=o r~-J YJ o 

f 
a ap+q+ l 

x P ( a - x )  ~dx= (~+q) 
o ( p + q +  1) 

one obtains 

1 ( a  a ) "  [2T~1)]" 
Z (n ) -- n Y-t-1 --~1 + --~2 - -n---+ i (B1) 

This relation is similar to (6). 
If the beams do not lie in the equatorial plan, (B1) 

should remain the same, provided T C~) is changed to 

T (1) = a  + - -  , 
71 cos /q  72 cos P2 

where /q  and P2 are the angles of the incident and dif- 
fracted beams with the equatorial plan. 

Suppose the distribution function a(e0 to be Lorentz- 
Jan. Using equation (14), one obtains 

c o (  ) ,  [T~)], 
Y~= ~ - 2Qo~.y,, (2,,) 

.=o 3 (n+ 1)t 

1 
= i,=o ~ ( - ypxs)"("z") (n + 1)i" 

We define z as 
z = ypX s 

and use the identity 

~o ( 2 ) "  nil exp ( -  U)Io(u) = ~ ( -  1)" (2") . 
u 

Therefore, 
1 P 

ys(z) = ~- I exp (-2Z)Io(2z)dz 

and the final expression uses the Bessel functions Io 
a n d / i :  

ys(z) = exp ( - 2 z )  [Io(2Z) + Id2z)] .  (B2) 

In the case of a Gaussian shape for 6(el), no closed 
form can easily be found and the series expansion (15) 
should be employed. 

u o 

~ o 

B, 

A, A2 

Fig. 5. Section of crystal in a plane parallel to u°o and u °, the 
incident and diffracted directions. 

M~ 

B 1  

P o 

(a) o) 
Fig. 6. The two geometrical situations for a point M in the crystal. 

A, B, 

A2 
B2 

B, 
A, 

. . . . . . . . . . . . . . . . . . . . . . .  t 

Fig. 7. The Laue case for a parallelepiped-shaped crystal. The full 
and dashed lines represent the entrance and exit surfaces 
respectively. 
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(a) (b) 
Fig. 8. Case of an infinite plate. 

; /  
wr 

a x 

Fig. 9. Case of a finite rectangular plate. 

(2) We consider now the Laue case for a finite plate, 
which is assumed to be rectangular. We assume an 
equatorial reflexion first (Fig. 9). 

The crystal is divided in three parts: 

(I) x e [0,a] y ~ [ b - ( a - x ) t a n e 2 , b ]  

x I T ~ -  b - y  T I =  7--2 72 ' 

(II) x e [0, al y e [0, x tan el] 

7"1= y T~= a - x  ' 
71 72 

(III) x ~ [0, a] y ~ [x tan oq, b - ( a - x )  tan ~2] 
x a - x  r l -  r ; -  
71 72 

By evaluation of the contribution of each domain 
to the integral for T ("), one obtains 

n+ 1 + - a "  _a_ n b (n+ 1) (n+2) 

(1,~_. ,-U:,+:zl) "-1 \(tanyl ~1 ...... + tany2 0~2 ]1 (B3) × 

where thc first term corresponds to the case a/b--> 0 
of the infinite plate. 

For a Gaussian shape of (7, the series expansion 
should be used but if 6 is Lorentzian, y~ can be ob- 
tained in a closed form. The first term in (B3) will lead 
to an expression similar to (B2) and form the identity 

n 1 2 
-(n+ 1) (n+2) n + l  (n+ 1) (n+2) ' 

the contribution of the second term can be also re- 
duced. If we define 

then 
t a n  e 2 1  

a \  71 - 72 I 
y~(z)= l + -  b ( 1 + 1 )  

x exp(-2z)  [Io(2Z)+ I1(2z)] 

i tan 0~ 2 ] 

, t an  + - - -~ - - /  exp ( -2z)  [I0(2z)-l]. + a \  71 

(B4) 

In the case of a non-equatorial reflexion, if the height 
of the crystal is large, the same result should be ob- 
tained, replacing 71 by 71 cos/~1 and 72 by 72 cos lz2. 
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